
Nicotinic acid (Acidum nicotinicum) Molecular formula. C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>

Relative molecular mass. 123.1

Graphic formula.



Chemical name. 3-Pyridinecarboxylic acid; CAS Reg. No. 59-67-6.

Description. Colourless crystals or a white, crystalline powder; odourless or almost odourless.

**Solubility.** Sparingly soluble in water; freely soluble in boiling water; soluble in 100 parts of ethanol (~750 g/l) TS; practically insoluble in ether R.

Category. Component of vitamin B complex; vasodilator.

Storage. Nicotinic acid should be kept in a well-closed container, protected from light.

## Requirements

**Definition.** Nicotinic acid contains not less than 99.0% and not more than 101.0% of  $C_6H_5NO_2$ , calculated with reference to the dried substance.

## Identity tests

• Either test A alone or all 3 tests B, C and D may be applied.

A. Carry out the examination as described under <u>1.7 Spectrophotometry in the infrared region</u>. The infrared absorption spectrum is concordant with the spectrum obtained from nicotinic acid RS or with the *reference spectrum* of nicotinic acid.

B. Heat 0.1 g with 0.4 g of anhydrous sodium carbonate R; pyridine, perceptible by its odour, is produced.

C. Dissolve 10 mg in 10 mL of water. To 2 mL add 2 mL of thiocyanate reagent, obtained by adding, drop by drop, ammonium thiocyanate (0.1 mol/l) VS to bromine TS1 until the yellow coloration disappears. Then add 3 mL of aniline (25 g/l) TS and shake; a yellow colour is produced.

D. Melting temperature, about 235°C.

Heavy metals. Use 1.0 g for the preparation of the test solution as described under <u>2.2.3 Limit test for heavy metals</u>, Procedure 3; determine the heavy metals content according to Method A; not more than 20  $\mu$ g/g.

**Chlorides.** Dissolve 1.25 g in a mixture of 2 mL of nitric acid (~130 g/l) TS and 20 mL of water, filter if necessary, and proceed as described under 2.2.1 Limit test for chlorides; the chloride content is not more than 0.2 mg/g.

Sulfated ash. Not more than 1.0 mg/g.

Loss on drying. Dry to constant weight at 105°C; it loses not more than 10 mg/g.

pH value. pH of a 13 mg/mL solution, 3.0-3.5.

**Related substances.** Carry out the test as described under <u>1.14.1 Chromatography</u>, Thin-layer chromatography, using silica gel R2 as the coating substance and a mixture of 85 volumes of 1-propanol R, 10 volumes of anhydrous formic acid R, and 5 volumes of water as the mobile phase. For the test solution, dissolve 75 mg in 5.0 mL of water with gentle heating; this constitutes solution A. Prepare a reference solution containing 0.12 mg/mL of nicotinic acid RS; this constitutes solution B. Apply to the plate 10  $\mu$ l of solution A using two 5- $\mu$ l aliquots, allowing the plate to dry in a current of cold air after the first application; then apply separately 5  $\mu$ l of solution B. After removing the plate from the chromatographic chamber, allow it to dry in a current of warm air, and examine the chromatogram in ultraviolet light (254 nm). Beside the principal spot, not more than 3 spots are obtained with solution A, and they are not more intense than the spot obtained with solution B.

**Assay.** Dissolve about 0.25 g, accurately weighed, in 50 mL of carbon-dioxide-free water R, and titrate with carbonate-free sodium hydroxide (0.1 mol/l) VS, using phenolphthalein/ethanol TS as indicator. Each mL of carbonate-free sodium hydroxide (0.1 mol/l) VS is equivalent to 12.31 mg of  $C_6H_5NO_2$ .